Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
X(X1, mark(X2)) → X(X1, X2)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(tt, M, N)) → U121(tt, M, N)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(s(X)) → S(proper(X))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
ACTIVE(x(N, s(M))) → U211(tt, M, N)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(U12(tt, M, N)) → PLUS(N, M)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → U221(proper(X1), proper(X2), proper(X3))
S(ok(X)) → S(X)
ACTIVE(U21(X1, X2, X3)) → U211(active(X1), X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)
ACTIVE(U22(X1, X2, X3)) → U221(active(X1), X2, X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
TOP(mark(X)) → PROPER(X)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
PLUS(mark(X1), X2) → PLUS(X1, X2)
TOP(ok(X)) → ACTIVE(X)
X(mark(X1), X2) → X(X1, X2)
U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
PROPER(s(X)) → PROPER(X)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
PROPER(U21(X1, X2, X3)) → U211(proper(X1), proper(X2), proper(X3))
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
TOP(ok(X)) → TOP(active(X))
ACTIVE(U21(tt, M, N)) → U221(tt, M, N)
S(mark(X)) → S(X)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
ACTIVE(U22(tt, M, N)) → X(N, M)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U22(tt, M, N)) → PLUS(x(N, M), N)
X(ok(X1), ok(X2)) → X(X1, X2)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
ACTIVE(U12(tt, M, N)) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → U111(tt, M, N)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
TOP(mark(X)) → TOP(proper(X))
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(x(X1, X2)) → PROPER(X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
X(X1, mark(X2)) → X(X1, X2)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(tt, M, N)) → U121(tt, M, N)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(s(X)) → S(proper(X))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
ACTIVE(x(N, s(M))) → U211(tt, M, N)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(U12(tt, M, N)) → PLUS(N, M)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → U221(proper(X1), proper(X2), proper(X3))
S(ok(X)) → S(X)
ACTIVE(U21(X1, X2, X3)) → U211(active(X1), X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)
ACTIVE(U22(X1, X2, X3)) → U221(active(X1), X2, X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
TOP(mark(X)) → PROPER(X)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
PLUS(mark(X1), X2) → PLUS(X1, X2)
TOP(ok(X)) → ACTIVE(X)
X(mark(X1), X2) → X(X1, X2)
U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
PROPER(s(X)) → PROPER(X)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
PROPER(U21(X1, X2, X3)) → U211(proper(X1), proper(X2), proper(X3))
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
TOP(ok(X)) → TOP(active(X))
ACTIVE(U21(tt, M, N)) → U221(tt, M, N)
S(mark(X)) → S(X)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
ACTIVE(U22(tt, M, N)) → X(N, M)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U22(tt, M, N)) → PLUS(x(N, M), N)
X(ok(X1), ok(X2)) → X(X1, X2)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
ACTIVE(U12(tt, M, N)) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → U111(tt, M, N)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
TOP(mark(X)) → TOP(proper(X))
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(x(X1, X2)) → PROPER(X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 10 SCCs with 26 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

X(ok(X1), ok(X2)) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


X(ok(X1), ok(X2)) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(X(x1, x2)) = x_1 + (4)x_2   
POL(ok(x1)) = 4 + (4)x_1   
POL(mark(x1)) = 3 + (4)x_1   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2, X3) → U221(X1, X2, X3)
U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2, X3) → U221(X1, X2, X3)
U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(U221(x1, x2, x3)) = (4)x_1 + (3)x_2 + (3)x_3   
POL(mark(x1)) = 4 + (2)x_1   
POL(ok(x1)) = 1 + (4)x_1   
The value of delta used in the strict ordering is 10.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ok(x1)) = 1 + (2)x_1   
POL(mark(x1)) = 4 + (4)x_1   
POL(U211(x1, x2, x3)) = (4)x_1 + (4)x_2 + x_3   
The value of delta used in the strict ordering is 9.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(PLUS(x1, x2)) = (4)x_1 + (4)x_2   
POL(ok(x1)) = 4 + (2)x_1   
POL(mark(x1)) = 4 + (2)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ok(x1)) = 4 + x_1   
POL(mark(x1)) = 4 + (4)x_1   
POL(S(x1)) = (4)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(U121(x1, x2, x3)) = (4)x_1 + (4)x_2 + x_3   
POL(ok(x1)) = 1 + (2)x_1   
POL(mark(x1)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 9.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(U111(x1, x2, x3)) = (4)x_1 + (3)x_2 + x_3   
POL(mark(x1)) = 4 + (2)x_1   
POL(ok(x1)) = 1 + (4)x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(x(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(x(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(PROPER(x1)) = (4)x_1   
POL(plus(x1, x2)) = 4 + (4)x_1 + (4)x_2   
POL(U22(x1, x2, x3)) = 4 + (4)x_1 + (4)x_2 + (4)x_3   
POL(U11(x1, x2, x3)) = 4 + (4)x_1 + (4)x_2 + (4)x_3   
POL(x(x1, x2)) = 4 + (4)x_1 + (4)x_2   
POL(s(x1)) = 4 + (4)x_1   
POL(U12(x1, x2, x3)) = 4 + (4)x_1 + (4)x_2 + (4)x_3   
POL(U21(x1, x2, x3)) = 4 + (4)x_1 + (4)x_2 + (4)x_3   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(plus(x1, x2)) = 4 + x_1 + (3)x_2   
POL(U22(x1, x2, x3)) = 4 + (3)x_1   
POL(U11(x1, x2, x3)) = 4 + (4)x_1   
POL(x(x1, x2)) = 4 + (4)x_1 + (4)x_2   
POL(s(x1)) = 4 + (4)x_1   
POL(U12(x1, x2, x3)) = 4 + (4)x_1   
POL(U21(x1, x2, x3)) = 4 + (4)x_1   
POL(ACTIVE(x1)) = (4)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.